
Dr. Jeremy Miller was educated at King’s College University of London. He holds a Ph.D in HighEnergy Physics from TelAviv. Currently Jeremy studies towards a Ph.D. in Applied Mathematics at the University of Southampton. His research is focused on gravitational wave modelling through solving Einstein’s equations at secondorder, in black hole perturbation theory.
Jeremy joined IMBM in September 2016. His research is the biomathematical modelling of prostate cancer, centered on the prediction of the time to biochemical failure for patients undergoing androgen depravation therapy.
Ph.D Physics, Tel Aviv University 2005 – 2009
Jeremy completed his Ph.D. in 2009 in high energy physics at Tel Aviv University. His research was under the supervision of Professor G. Levin and was focused on the detection of the Higgs Boson particle. One of his major research achievements was the first analytical calculation of the survival probability in the QCD approach, an important quantity in diffractive Higgs production at the large hadron collider (LHC) at CERN (see publication 11 below). In addition Jeremy contributed to the first summation of Feynman loopdiagrams in QCD, an ingredient key to the calculation of the protonproton scattering amplitude in QCD.
PostDoctorate, Instituto Superio Tecnico (IST), Lisbon 2009 – 2012
Later Jeremy was a postdoctorate fellow at the Instituto Superio Tecnico (IST) in Lisbon. Here Jeremy completed his calculation of the protonproton scattering amplitude in QCD, using the SchwingerDyson equation (publication 6). He also contributed to the calculation of the amplitude for deep inelastic scattering in N=4 Super YangMills theory.
Ph.D. Mathematics, University of Southampton 2013 2016
Later on Jeremy began Ph.D. in 2013 in General Relativity. His research is centered on calculating the secondorder selfforce, which is key for being able to accurately model gravitational waves emitted from extrememassratioinspirals (EMRIs), the inspiral of a solarmass object into a massive black hole. His research achievements include solving the Einstein equation to firstorder in black hole perturbation theory, and the construction of a model for solving them at second order.
IMBM Work Program for 201617
Jeremy is currently a member of IMBM where his research is directed towards the predicting the time of biochemical failure (BF) in patients with prostate cancer. He is focused on developing a mathematical model for levels of prostatespecific antigen (PSA) in patients in the hormone sensitive phase of prostate cancer. The goal is to refine the model to reflect the biological process more accurately and solve of the system of equations to provide an accurate prediction for the time of BF.
Publications
 Miller J, Pound A, and Wardel B. Secondorder perturbation theory: The problem of infinite mode coupling. Accepted for publication in Phys. Rev. D
 Miller J, Pound A. Practical, covariant puncture for secondorder selfforce calculations. Phys. Rev. D, 2014, 89 10, 104020
 Levin E, Miller J, The BFKL Pomeron calculus: summing enhanced diagrams. Nucl. Phys. A 2012, 51 pp. 2947
 Contreras C, Levin E, Miller J, BFKL Pomeron calculus: nucleusnucleus scatterings. Nucl. Phys. 2012, A 884885 pp. 5183
 Kormilitzin A, Levin E, Miller J, High density QCD and nucleusnucleus scattering deeply in the saturation region. Nucl. Phys. 2011, A 859 pp. 87113
 Miller J. The SchwingerDyson equation on Pomeron loop summation and renormalization. Nucl. Phys. 2010, A 836 pp. 119135
 Levin E, Miller J, Kopeliovich Z, and Schmidt I. GlauberGribov approach for DIS on nuclei in N=4 SYM. JHEP 2009 (0902) pp.048
 Gotsman, E, Levin E, Maor U, and Miller J. A QCD motivated model for soft interactions at high energies. Eur. Phys. 2008 (57) pp.689709
 Levin E, Miller J. Two parton shower background for associate W Higgs production. Eur. Phys. 2009(61) 131
 Levin E, Miller J. and Prygarin A. Summing Pomeron loops in the dipole approach. Nucl. Phys.2008 A (806) pp. 245286
 Miller J. Survival probability in diffractive Higgs production in high density QCD. Eur. Phys.C 2008 56(1) pp.3955
 Levin E, Levin E, Khachatryan V, and Miller J. The BFKL Pomeron calculus in zero transverse dimensions: Diffractive processes and survival probability for central diffractive production. Nucl. Phys. 2007 A 791(34) pp.382405
